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3.1 INTRODUCTION 

Raw material cost reaches a considerable part of agro-industry chains 
products. This note focuses on the raw material cost estimation in the bio-
energy industry, that in some cases amounts at 60% of bio-fuel cost for bio-
chains. Therefore biomass supply curve estimation is extremely valuable for 
the industry as well as for governmental agencies. This paper attempts to 
estimate energy crop supply based on mathematical programming principles. 
In order to enhance the predictive ability of such a model and to provide an 
analytical tool useful to policy makers, interval linear programming (ILP) is 
used to formalise bounded rationality conditions. In the presence of uncertainty 
related to yields and prices it is assumed that the farmer minimises the distance 
from optimality once uncertainty resolves introducing an alternative criterion to 
the classic profit maximisation rationale. Model validation based on observed 
activity levels suggests that about 40% of farms adopt the min-max regret 
criterion. Then energy crop supply curves, generated by the min-max regret 
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model, are proved to be upward sloped but slightly displaced to the right 
compared with classic LP supply curves. 

The first major Common Agricultural Policy reform of 1992 that shifted 
support from price to cultivated surface attempted to cope with overproduction 
and excess stocks of cereals introducing the obligatory Set Aside. This latter 
measure would have a considerable impact to European cereal produces 
assessed by numerous studies. This was one of the reasons that pushed the 
French government to decide to exempt biofuels from the Petroleum Products 
Excise already in 1993, thus to alleviate pressure on the income of numerous 
arable cropping farmers, while supporting agro-industry and refineries to exploit 
patents on biofuels and use idle capacity. An important part of the budget, 
which reached € 150 million in 2000, is annually earmarked to finance biofuel 
excise tax exemption, allocated among the Ethyl Tertio Butyl Ether (ETBE) and 
Rapeseed Methyl Ester (RME) industry and the agricultural sector, namely 
wheat, sugar-beet and rapeseed producers. This policy has been criticised on 
efficiency grounds leading the government to revise the unitary tax exemption 
levels in 2002 at the expense of ethanol chain. Sourie et al. (2002) as well as 
Sourie and Rozakis (2001), have carried out studies of the French agricultural 
production of energy crops by means of mathematical programming. These 
studies reveal that agricultural raw material expenditure constitutes a significant 
part of the biofuel cost that depends on food crops’ profitability. A precise 
assessment of it would enhance the value of economic analyses on biofuels. 
This would enable welfare effects to be correctly estimated thus assisting in 
credible evaluation of public policy. 

The above mentioned studies elaborated arable sector linear programming 
models, comprising hundreds of representative farms, that maximise farm 
income subject to the interdependencies of food and non-food crops. Different 
productive units, namely arable cropping farms act independently in a context 
of perfect competition. Such sector models are built upon a common sort 
of structure which arises in multi-plant models, known as a block angular 
structure (Williams, 1999), account for policy changes and can be used to 
derive opportunity costs and supply curves of energy crops (Sourie, 2002). 
Mathematical programming has proved to be one of the most powerful tools 
in the analysis of resource allocation choices at the firm and sector level. 
However, the introduction of alternative methods to classic linear programming 
in order to consider risk at the level of the decision making (DM) unit when 
selecting among alternative activity levels seems necessary in the increasingly 
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uncertain environment of European agriculture. This paper proposes an 
interval programming approach where the DM (each farmer) has incomplete 
information on the objective function coefficients at the crop mix decision 
moment. It is assumed that beside the risk-neutral expected gross margin 
maximisation behaviour, risk-averse farmers may adopt the min-max regret 
criterion. Observed crop mix data for each representative DM unit reveal 
whether the farmer adopts risk averse or neutral behaviour. Therefore sub-
models corresponding to risk-neutral farms are always specified as LP whereas 
those sub-models representing farmers that do not pretend perfect information 
on gross margins are specified as interval linear programming (ILP). 

In the following section uncertainty is introduced with a brief review of 
the literature devoted to interval programming as well as a formal definition 
of the Interval Linear Programming (ILP) problem is presented. In the third 
section the background sector LP model and the estimation of non-food 
crop opportunity costs per farm as well as methodology for deriving supply 
curves is presented. Results confirm that many firms (farmers) do not follow 
the profit maximisation rationale in cases of limited information on expected 
margins. Finally, supply curves determined from a combination of max profit 
and min-max regret utility functions, that is generated by the hybrid model 
will be outlined. Conclusions complete the paper.

3.2 UNCERTAINTY AND INTERVAL PROGRAMMING 

In mathematical programming models, the coefficient values are often 
considered known and fixed in a deterministic way. However, in practical 
situations, these values are frequently unknown or difficult to establish precisely. 
Interval Programming (IP) has been proposed as a means of avoiding the 
resulting modeling difficulties, by proceeding only with simple information 
on the variation range of the coefficients. Since decisions based on models 
that ignore variability in objective function coefficients can have devastating 
consequences, models that can deliver plans that will perform well regardless of 
future outcomes are appealing. More precisely, an ILP model consists of using 
parameters whose values can vary within some interval, instead of parameters 
with fixed values, as is the case in conventional mathematical programming. 

In the literature, two distinct attitudes can be observed. The first attitude 
consists of finding all potentially optimal solutions that the model can return 
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in order to examine the possible evolutions of the system that the model is 
representing. The methods proposed by Bitran (1980) and Steuer (1989) follow 
this kind of logic. The second attitude consists of adopting a specific criterion 
(such as the Hurwicz’s criterion, the maxmin gain of Falk, the minmax regret 
of Savage, etc.) to select a solution among the potentially optimal solutions. 
Rommelfanger (1989), Ishibuchi and Tanaka (1990), Inuiguchi and Sakawa 
(1995) and Mausser and Laguna (1998, 1999a, 1999b) proposed different 
methods with this second perspective. 

Minimizing the maximum regret consists of finding a solution which will 
give the decision maker a satisfaction level as close as possible to the optimal 
situation (which can only be known as a posteriori), whatever situation occurs 
in the future. The farmers are faced with a highly unstable economic situation 
and know that their decisions will result in uncertain gains. It seems reasonable 
to suppose that they will decide on their surface allocations prudently in 
order to go through this time of economic instability with minimum loss, while 
trying to obtain a satisfying profit level. This is precisely the logic underlying 
the minmax regret criterion; i.e. selection of a robust solution that will give a 
high satisfaction level whatever happens in the future and that will not cause 
regret (Loomes and Sugden, 1982). Therefore, we make the hypothesis that 
the farmers of the considered region adopt the min-max regret criterion to 
make their surface allocation decisions. The mathematical translation of this 
hypothesis for the arable sector supply model was to implement the minmax 
regret solution procedure proposed in the literature (Inuiguchi and Sakawa, 
1995, Mausser and Laguna, 1998, 1999a, 1999b).

3.3  MATHEMATICAL MODELLING AND SUPPLY OF RAW 
MATERIAL 

The raw material costs, defined at the farm level, form a significant part of 
the bio-fuel cost. In the French context, this share varies between 20 and 25 
% for wheat or sugar-beet and 60 to 65 % for rapeseed (Sourie & Rozakis, 
2001). Due to an important spatial dispersion of bio-fuel raw material in many 
productive units (farms) and competition between agricultural activities for the 
use of production factors (land in particular), strongly dependent on the CAP, 
the cost estimates of these raw materials raise specific problems. Thanks 
to supply models, based on linear programming, it is possible to correctly 
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estimate these costs, their diversity and finally to aggregate them in order to 
obtain raw material supply for industry. As a matter of fact, three principal 
difficulties are faced:

Firstly, the scattering of the resource. Currently, France has more than 
50 000 energy crop (wheat, sugar-beet, and rapeseed) producers according 
to the professional association of oil-seed growers (ONIOL, 2002). In this 
heterogeneous context, average cost is not a suitable concept.

Secondly, the competition existing between agricultural activities and non-
food crops at the farm level. In order to satisfy agronomic constraints when 
introducing non-food crops, food rotation may be altered. This competition 
imposes a minimum level of profitability for non-food crops. We cannot consider 
the food activities and the non-food activities as independent so this implies 
that the full cost valuation method results, which do not take into account 
endogenous dependences between crops, may be a misleading indicator to 
predict farmers’ decisions regarding energy crop cultivation.

Finally, the dependence of raw material costs on agricultural policy 
measures. The changes in agricultural policy, for example, a modification of 
the obligatory set-aside land rate or of the levels of direct subsidies to crops, 
affect the opportunity costs. 

The microeconomic concepts of supply curve and opportunity cost make 
possible a solution to these difficulties. These concepts could be elaborated 
in a satisfactory way by using mathematical programming models, called 
supply models, based on a representation of farming systems. This approach 
also leads to an estimate of the agricultural producers’ surplus, which is an 
item of the cost-benefit balance of bio-fuels. It is postulated that the farmers 
choose among food crops Xc and non-food crops Xd so as to maximize the 
agricultural income of their farm. Thus, each producer f maximizes gross 
margin (g). Variables X take their values in a limited feasible area defined by 
a system of institutional, technical and agronomic constraints. 

The opportunity cost is obtained in the following way: Firstly, transforming 
the coefficients of the non-food cultures in the objective function, by removing 
the sales component, (thus there remain variable expenses (Cd) + subsidies 
(Sd)): 

 
 (1)
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At the optimum of (1) under constraints, surfaces cultivated by energy 
crops will be zero. Now consider a production of a minimal quantity q of a 
crop xd by setting down the constraint yd xd >q, where yd represents the yield 
of the energy crop d. The objective function will decrease and the model will 
automatically calculate a result which is interpreted as the cost of the last unit 
produced to reach the imposed quantity q. It is the opportunity cost estimate. 
This result is an output of any optimization model under constraints, known as 
its shadow price equal to the constraint dual value. The opportunity cost will 
vary according to the produced quantities q, within each farm but also across 
farms when the constraint applies to all farms (  non-negative quantities of 
non-food resources): 

 
 (2)

Thus, the energy crop supply takes into account competition with other 
non-food as well as food crops in a large number of farms. These results 
underline the interdependence between arable crops as well as cross-price 
dependencies. The national model is a set of individual farm models, suitably 
weighted to obtain a representative image of the farms able to produce non-
food cultures. The dual values of the binding constraint (2) give the minimal 
prices pd

* that the industry must pay the producers in order to obtain the 
demanded quantity . Non-food crop production is distributed in an optimal 
way among the various farms f, so that reduction in the objective function 
value, i.e. the total cost of production, becomes minimum. By increasing the 
quantity , one obtains the corresponding  pd

* . The relation  pd
*  = Jd (qd) is 

a (inverse) supply curve of the resource d. 
If the optimal distribution of production is not satisfactory when taking into 

consideration the equity criterion or other political criteria, the model could be 
modified by imposing rules of sharing out non-food crop production among 
farms. Consequently, the opportunity cost will be higher, as the solution of 
the modified model shows. Different values of the parameters in the model 
(for example, the rate of obligatory set-aside or of the quantity of bio-fuel to 
be produced) gives rise to a new supply curve. Thus, for each non-food crop 
d, there exists a family of supply curves. 
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3.4 CASE STUDY AND MODEL VALIDATION

The interval linear programming approach with the minmax regret criterion 
objective function has been implemented to investigate if the model validity 
can be improved by this approach. Gross margin intervals have been used 
in the model for crops that appear in the sample, so that, the number s of 
interval-valued coefficients can be up to 9. For the initial regret candidates 
to start the algorithm, we used the LP optimal solutions. The principal effect 
of the ILP approach with the minmax Regret is: when the difference between 
the gross margins is relatively small, the minmax regret approach gives more 
“balanced” solutions, more so when the interval coefficients get larger. In 
fact, as the intervals get larger, the gross margins for different crops start to 
overlap or, if they already have an intersection, this increases. It then becomes 
more difficult for the farmer to anticipate which crop will be more profitable. 
Hence, the min-max regret approach tends to return more and more balanced 
solutions as the size of the intervals increase. A detailed discussion on this 
point is presented by Kazakci and Vanderpooten (2002).

Thus some farmers maximize gross margin while others demonstrate 
risk averse attitude in the sense of minimising the maximum regret. For each 
individual farm elementary model a simple algorithm replaces the objective 
function with that, between gross margin maximization and min-max regret, 
performing better in terms of proximity of the resulted crop mix to the observed 
one. This way we end up with a hybrid regional model with a custom objective 
function for each representative farm. This model has by definition a higher 
predictive capacity than the initial LP, so it will be used to generate energy 
crops’ supply curves. For this purpose the procedure proposed in section 3.3 
is applied adapted to host minmax regret terms in the aggregate objective 
function. Then a constraint common to all farms obliges the model to produce 
fixed quantities of energy crops. 

Different factors affect the relative position against classic LP generated 
supply curves. Not only because the objective function value in terms of 
total farm gross margin at the minmax regret optimum is lower than the LP 
optimal value (results in lower opportunity cost), but also that the energy crop 
giving relatively stable gross margin is appreciated in the farm comparing 
with other crops with high variability (higher opportunity cost). Depending on 
the above factors, as well as the interaction with the constraint structure, the 
minmax supply curves are located to the right of the LP curve up to a certain 
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quantity level. Quantities used in the biofuel industry float in this range, thus 
we consider that the min-max criterion adoption results in lower opportunity 
costs of biomass raw material for the biofuel industry. The difference between 
biofuel estimated cost and its market value indicates the minimal subsidy 
(equivalent to the excise tax exemption) necessary to make biofuels financially 
viable. Biofuel costs calculated using minmax regret objective functions are 
5% lower than their LP counterparts. 

Figure 3.1 Supply curves resulted by max profit and min-max regret 
objectives at the regional level

3.5 CONCLUSION

This analysis underlines different factors that determine the agricultural 
raw material cost used for the production of bio-fuels. Certain factors are 
endogenous to the farms such as crop yields; other factors are exogenous 
such as agricultural policy decisions, in particular those that relate to the 
rate of land set-aside. Climatic risks are also a source of cost variation. In 
addition to cost variation factors that are farm specific, spatial variability 
exists, which is the result of differences in economic efficiency among farms. 
The concepts of agricultural supply and opportunity cost resulting from the 
microeconomic theory, which find an application within the framework of 
mathematical programming models, allow for modelling of the agricultural 
complexity with very interesting results.
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